Usage Guide =========== Overview -------- SENDQSARpy simplifies the following workflows: 1. **Data Acquisition**: Fetching and preprocessing data from the SEND database. 2. **Descriptor Calculation**: Computing molecular descriptors for QSAR modeling. 3. **Model Building**: Training predictive models using various algorithms. 4. **Evaluation**: Assessing model performance. Detailed Example ---------------- This is how you can use SENDQSARpy for a complete QSAR workflow: .. code-block:: python from sendqsarpy import preprocess, calculate_descriptors, train_model # Step 1: Preprocess the data data = preprocess("path/to/send_data") # Step 2: Calculate molecular descriptors descriptors = calculate_descriptors(data) # Step 3: Train the model model = train_model(descriptors) # Step 4: Evaluate the model results = model.evaluate() print("Model Evaluation:", results)